
J. Fluid Mech. (2007), vol. 571, pp. 439–454. c© 2007 Cambridge University Press

doi:10.1017/S0022112006003387 Printed in the United Kingdom

439

Drag and lift forces on bubbles in a rotating flow
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3Institut de Mécanique des Fluides de Toulouse, (IMFT), Allée du Professeur Camille Soula,
31400 Toulouse, France

4Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

(Received 18 January 2006 and in revised form 20 July 2006)

The motion of small air bubbles in a horizontal solid-body rotating flow is investigated
experimentally. Bubbles with a typical radius of 1 mm are released in a liquid-filled
horizontally rotating cylinder. We measure the transient motion of the bubbles in
solid-body rotation and their final equilibrium position from which we compute drag
and lift coefficients for a wide range of dimensionless shear rates 0.1 < Sr < 2 (Sr is
the velocity difference over one bubble diameter divided by the slip velocity of the
bubble) and Reynolds numbers 0.01 < Re< 500 (Re is based on the slip velocity and
bubble diameter). For large Sr, we find that the drag force is increased by the shear
rate. The lift force shows strong dependence on viscous effects. In particular, for
Re < 5, we measure negative lift forces, in line with theoretical predictions.

1. Introduction
Bubbly flows are of great importance in many technical and environmental questions

and applications. Therefore, understanding the dynamics of bubbles and the forces
acting on them is a central issue in work on multi-phase flow. These forces result
from the integrated stresses acting on their (deformable) surfaces. A full numerical
treatment is possible only for a limited number of bubbles. For instance, Tryggvason
et al. (2001) could simulate, at most, a few hundred bubbles, rising at moderate
Reynolds number (Re = 20–30), by employing a front-tracking method. To be able
to track numerically many more bubbles in an efficient way (for instance to study
modifications of turbulence by bubbles), realistic models of the various forces acting
on bubbles are required. It is therefore crucial to know how the drag and lift – or, in
non-dimensional form, the drag and lift coefficients – depend on the particular flow
situation, i.e. on the local velocity, shear, or vorticity, etc.

The importance and subtlety of the lift force is reflected in various examples. (i) In
upward vertical pipe flow, the lateral distribution of bubbles is governed by the lift.
The radial bubble migration is found to depend strongly on the bubble size: small
bubbles migrate towards the pipe wall, whereas large bubbles tend to accumulate in
the centre, resulting in a core-peak bubble distribution (Guet et al. 2004). The sign
of the lift force is believed to depend also on the bubble’s shape. Measurements of
lift forces for bubbles in a simple shear flow were carried out at moderate Re by
Tomiyama (2002). These measurements indicate negative lift forces for large deformed
bubbles, resulting in a lateral motion of the bubbles opposite to that predicted for
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a spherical bubble by inviscid theory. (ii) Numerical simulations of bubble-laden
homogeneous and isotropic turbulent flow show that the role of the lift force is
crucial, because it strongly enhances the preferential accumulation of bubbles in the
downward flow side of vortices (Climent & Magnaudet 2006; Mazzitelli, Lohse &
Toschi 2003a, b). This results in a considerably reduced rise velocity of the bubbles
and an alteration of large-scale motion.

The aim of this work is to measure experimentally the lift and drag forces in a
well-defined flow geometry, with well-defined and temporal constant flow velocity
and vorticity. More specifically, we revisit the experiments by Naciri (1992) who
studied a bubble in a rotating cylinder, i.e. in a well-defined solid-body rotating flow.
The advantage of this set-up is that the bubbles reach a stable position. In this
equilibrium position, the forces acting on the bubble – buoyancy, viscous drag, added
mass, inertial (or pressure gradient) force and lift – exactly balance each other. Drag
and lift can then be deduced from the known added mass, inertial and buoyancy
forces. As compared to Naciri (1992), we considerably extended the studied parameter
space and also improved the experimental precision. We also compare our results
with those from Sridhar & Katz (1995) who studied the force on a bubble crossing a
vortex ring.

Related work is described in Rensen et al. (2001) where we study the competition
between hydrodynamical and acoustical forces and in Lohse & Prosperetti (2003).
Complementary work on the analysis of heavy particles in solid-body rotation is
reported in Ashmore, del Pino & Mullin (2005) and Seddon & Mullin (2006), where
the focus is on the interaction of the heavy object with the wall.

The outline of this paper is as follows. In § 2, the equation of motion of a bubble
is introduced, the relevant dimensionless numbers are indicated and previous results
for lift and drag coefficients are discussed. The experimental set-up is described in § 3.
The results for the drag and lift coefficient measurements are stated in § 4 followed
by concluding remarks in § 5.

2. Effective forces on bubbles
2.1. Dynamical equations, flow field and dimensionless parameters

For a clean (i.e. uncontaminated by surfactants) spherical bubble rising at moderate-
to-large Reynolds number, the approximate force balance is (Magnaudet & Eames
2000):

ρlVbCA

dv

dt
= ρlVb(CA + 1)

DU
Dt

+ ρlVbCL(U − v) × (∇ × U)

+ 1
2
ρlCDA|U − v|(U − v) − ρlVb g, (2.1)

where v is the bubble velocity, g the acceleration due to gravity, ρl the liquid density �
ρg the gas density, Vb the bubble volume, and A the projected area of the bubble.
U is the velocity of the undisturbed ambient flow taken at the centre of the bubble.
This empirical equation is known to hold approximately for Re > 5. It depends on
three coefficients, two of which are a priori unknown: the lift coefficient CL, and
the drag coefficient CD . The same equation holds for spheroidal bubbles translating
about one of their principal axes. For such spheroidal bubbles, CA is known (Lamb
1934) and becomes 1/2 in the spherical case for all Re (Magnaudet & Eames 2000).
Equation (2.1) takes into account added mass, inertia, shear-induced lift, viscous
drag and buoyancy. We stress once more that (2.1) is not a good description for
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Figure 1. Balance of buoyancy, viscous drag, shear-induced lift, pressure gradient and added
mass forces. The position of the bubble is given in cylindrical coordinates, in which the
rotation and symmetry axis of the cylinder coincide with the z-axis. The cylinder rotates
counterclockwise with constant angular velocity ω.

low-Reynolds-number particles, as then the lift contribution is not appropriately
parameterized and the history force matters (see e.g. Yang & Leal 1991; Galindo &
Gerbeth 1993; Legendre & Magnaudet 1998; Magnaudet & Legendre 1998; Toegel,
Luther & Lohse 2006). We will discuss the applicability of (2.1) in more detail in § 2.3.

In a solid-body rotating flow with constant angular velocity ω, see figure 1, the
undisturbed flow in cylindrical coordinates is:

U(r) = ωr êϕ, (2.2)

with vorticity ∇ × U = 2ωêz. The dimensionless numbers characterizing the system are
the Reynolds, Strouhal and Froude numbers,

Re =
2Rb|U − v|

ν
, Sr =

2Rbω

|U − v| , Fr =
|U − v|2
2Rbg

. (2.3)

Here, Rb is the equivalent bubble radius and ν the kinematic viscosity. Note that the
product of the Reynolds and Strouhal numbers results in another ‘Reynolds’ number,
Reω, which is just the Taylor number, namely,

Reω = ReSr =
(2Rb)

2ω

ν
. (2.4)

It is known that the Taylor number is the central dimensionless control parameter of
particle dynamics in low-Re rotating flows (Herron, Davis & Bretherton 1975; Gotoh
1990). The Weber number,

We =
2Rbρl |U − v|2

σ
, (2.5)

where σ denotes the surface tension, determines whether the bubble will be spherical
or not. When We � 1, the bubble can be assumed to be spherical.
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2.2. Drag force

For a clean spherical bubble in steady motion in a uniform flow, the viscous drag
force may be described by introducing the empirical relation due to Mei, Klausner &
Lawrence (1994) for the drag coefficient CD which matches asymptotic results in the
limit of both low and high Re:

CD =
16

Re

[
1 +

[
8

Re
+ 1

2

(
1 + 3.315Re−1/2

)]−1]
. (2.6)

Owing to contamination of the liquid, surfactants may collect on the bubble surface
and the zero-shear-stress boundary condition on the surface may no longer be valid.
The viscous drag then increases and, for many surfactants, approaches that of a solid
sphere, as indicated (for example) by the measurements by Sridhar & Katz (1995),
Maxworthy et al. (1996) and Naciri (1992). For a solid sphere, one of the most widely
used parameterizations for the drag coefficient is (Clift, Grace & Weber 1978):

CD =
24

Re
[1 + 0.15Re0.687]. (2.7)

Shear effects also increase the viscous drag force by broadening the near wake. Nu-
merical simulations of a bubble in a linear shear flow (Legendre & Magnaudet 1998)
reveal a significant dependence of the drag coefficient on the dimensionless shear
rate (Sr) for moderate-to-large Re (typically, Re � 50). Whereas the drag remains
essentially unaffected for Sr � 0.2, a huge increase is observed for Sr= O(1). From
their numerical data, they found the relation:

CD,Sr = CD0(1 + 0.55 Sr2), (2.8)

where CD0 is the drag coefficient in the absence of shear.

2.3. Lift force

There have been various theoretical and numerical investigations of the lift force
experienced by rigid spheres and bubbles in vortical flows. For a quasi-steady weak
(i.e. Sr � 1) linear shear flow, Auton (1987) analytically predicted the lift coefficient
involved in (2.1) to be 1/2 in the inviscid limit. Auton, Hunt & Prud’Homme (1988)
combined this result with that of Taylor (1928) for the force on a sphere in an
unsteady strained flow. In the limit of weak vorticity and unsteadiness, they showed
that Auton’s (1987) result may simply be added to Taylor’s (1928) result, yielding the
inviscid part of (2.1).

As pointed out above, an experiment similar to the present one was carried out
by Naciri (1992). He found experimentally that the lift coefficient depended on the
Froude number for 0.3 <Fr< 2.6 and parameterized this dependence as:

CN
L = 1

2
(1 + CA) − 0.81√

Fr
+

0.29

Fr
. (2.9)

The superscript N stands for Naciri. The range of Reynolds numbers covered in these
measurements is between 10 and 2500, and the bubble radii ranged from 0.4 to 6 mm.

Similarly, Sridhar & Katz (1995) studied bubbles entrained in vortices produced
by a vortex ring generator. This is not solid-body rotation, because vorticity decays
away from the core. Moreover, the authors used tap water, so their bubbles were
contaminated by surfactants. The measured lift coefficients were found to be almost
independent of the Reynolds number, but dependent on the shear rate through the
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following empirical relation:

CSK
L = 0.22 Sr−0.75, (2.10)

for 20 < Re< 80, 0.004 < Sr< 0.09 and bubble radii ranging from 0.25 to 0.4 mm. The
measured lift coefficients were substantially larger than theoretical predictions, which
is not surprising since the low- (resp. high-) Re results were compared with Saffman’s
(1965) result (resp. with Auton’s (1987) result), both of which were derived for a
pure shear flow. Other empirical correlations are based on numerical simulations of
the detailed flow structure around a sphere. Bagchi & Balachandar (2002) studied
vortex-induced lift for a rigid sphere at moderate Re in the range 10 to 100 and weak
vorticity (0.04 < Sr< 0.1). They found a significantly enhanced positive lift coefficient
for vortex flows in agreement with the measurements of Sridhar & Katz (1995) and
again at odds with predictions from inviscid and low-Re theories.

In a solid-body rotating flow with constant angular velocity ω, both the shear-
induced lift force (FL) and the added mass and inertial force (FA) acting on a bubble
in equilibrium have only radial components, and can be combined in terms of a
rotational lift force. In the inviscid limit, this yields for a bubble at rest

FL + FA = ρlVb

[
CLU × (2ωêz) + (CA + 1)

DU
Dt

]

= ρlVbω
2re[2CL − (CA + 1)] êr = 2CLΩρlVbω

2re êr , (2.11)

where re is the equilibrium radial position of the bubble (see figure 1) and the
rotational lift coefficient is defined as:

CLΩ = CL − 1
2
(1 + CA), (2.12)

For a sphere, (2.12) results in CLΩ = −1/4, indicating that the direction of the total
lift force is opposed to that found in a simple shear flow. This is because the inertial
and added-mass forces (which are strictly zero in a linear shear flow) are centripetal
in a solid-body rotation flow and exceed the centrifugal shear-induced lift force.
Magnaudet & Legendre (1998) obtained an empirical expression from numerical
simulations for the rotational lift coefficient for a spherical shear-free bubble in solid-
body rotation for 10 <Re < 1000 and for weak to moderate shear (0.02 < Sr < 0.2),
namely

CML
LΩ = −0.25 + 1.2 Re−1/3 − 6.5 Re−1 + O(Re−1). (2.13)

Although (2.1) is widely used to track bubbles over a wide range of Reynolds
numbers, it must be realized that it is inadequate in the low-Re regime. For instance,
in the flow considered here, the inertial and added-mass contributions provided by
the fluid acceleration are O(ReSr) (adopting a scaling in which the viscous drag
is O(1)), so that they are negligibly small compared to contributions such as the
history force which is neglected in (2.1). More importantly, the expression of the
shear-induced lift force involved in (2.1) (the second term on the right-hand side)
is specific to moderate or large Re. In contrast to this O(ReSr) lift contribution,
low-Re shear-induced lift forces are O((ReSr)1/2), as first shown by Saffman (1965).
Hence, they provide the dominant hydrodynamic contribution to the radial force
balance. The low- and high-Re scalings of the shear-induced lift force are different
because the underlying physics differ from each other. At large Reynolds number,
the shear-induced lift force taken into account in (2.1) results from the tilting of the
upstream vorticity around the bubble which is a body of finite span, like an airfoil.
This tilting induces a non-zero streamwise component of the vorticity in the wake,
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Figure 2. Sketch of the shear-induced lift mechanism in the high-Re regime. The vortex pair
behind the bubble induces a lift force.

which gives rise to a pair of counter-rotating vortices (figure 2). The flow created by
this pair of vortices results in a force FL which, in a pure linear shear flow as well as
in the solid-body rotation considered here, tends to push the body towards the high
relative velocity side (as pointed out earlier, besides this shear-induced force there
is in general another contribution to the lift which is due to the fluid acceleration
DU/Dt , and which in the present flow is dominant and makes the total lift force
centripetal).

In contrast, the low-Re picture relies on the far-field flow in which the disturbance
produced by the body (i.e. the force due to the Stokeslet associated with the body)
generates small inertial and viscous contributions of similar magnitude, which in turn
produce a small uniform flow in the vicinity of the body. The direction of this uniform
flow is generally not aligned with that of the primary flow, resulting in a lift force. For
a bubble or a rigid sphere moving along a simple shear flow, this force has the same
direction as its high-Re counterpart, but the two mechanisms differ. At low Reynolds
number, the sign of the force results from the displacement of fluid particles in the
far-wake relative to the ambient flow, which increases (if the particle is fixed) in the
direction of increasing velocities, resulting in a lateral pressure gradient which tends
to move the particle in the same direction. This was the situation considered in the
pioneering work of Saffman. While determining the sign of the low-Re lift force on
the grounds of simple physical arguments is relatively easy in this case, it is frequently
less intuitive when the particle moves at an arbitrary angle to the base flow, or when
the latter is not unidirectional. In the situation we are considering here, two opposite
effects are competing. First, given the linear increase of the undisturbed velocity
with the local radius r , the velocity difference between the outer (undisturbed) flow
and the defect velocity within the wake is larger on the outward side of the wake
than on the inner side. This effect, similar to that encountered with a fixed particle
embedded in a pure shear flow, results in a centrifugal lift force (FL1 in figure 3).
On the other hand, it must be borne in mind that the wake centreline approximately
follows the streamlines of the base flow, i.e. the wake is curved by the external
flow. Then, considering that any slice of wake results in an infinitesimal force δFw

perpendicular to its plane and directed downstream, it is immediately seen in figure 3
that the total wake-induced force Fw =

∫
δFw obtained by integrating along the wake

consists of a drag force and a centripetal contribution (FL2 in figure 3). The question
is then which of the centrifugal and centripetal lift contributions, both of which are
O((ReSr)1/2), is larger. There seems to be no rational way to settle this question on
the basis of simple qualitative arguments. However, the full theoretical determination
of the corresponding transverse force for a fixed sphere embedded in a solid-body
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w

Figure 3. Sketch of the lift mechanism in the low-Re regime. There are two opposite
contributions FL1 and FL2 to the lift force. For a detailed description of the mechanism
see the end of § 2.3.
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Figure 4. Theoretical bubble trajectories for different values of Reω and CL: (a) spiral with
Reω = 0.1, (b) spiral with Reω = 1, (c) spiral with Reω = 10, (d) cycloid with Reω = 50 and
(e) non-spiral with Reω = 50. In (a)–(d) CL = 0.5, while in (e) CL = 0.9; Rb = 0.5 mm in all
cases. The bubble was released from (1, 0) each time, both x and y axes are in mm.

rotation flow was achieved by Gotoh (1990) under asymptotic conditions identical to
those considered by Saffman (1965). His result indicates that the centripetal effect is
dominant, which implies that the lift coefficient is negative if the force is expressed
using the inertial scaling of (2.1). The prefactor of this O((ReSr)1/2) centripetal force is
about six times smaller than that of the Saffman shear-induced lift force, a reduction
which may be interpreted as a direct consequence of the competition between the
two opposite contributions FL1 and FL2. The most important conclusion we can
draw from the above considerations is that the mechanisms responsible for the shear-
induced lift force are deeply different in the high- and low-Re regime. In the particular
case of a fixed sphere embedded in a solid-body rotation flow, we expect this force to
change from centrifugal to centripetal as the Reynolds number is decreased.

2.4. Trajectories and equilibrium bubble position

We now show typical bubble trajectories as they follow from the dynamical equ-
ation (2.1) with assumed drag and lift coefficients. Figure 4 shows the trajectory of the
bubble for different values of Reω = (2Rb)

2ω/ν and CL. To calculate these theoretical
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trajectories, CA was assumed to be 1/2 and (2.7) was used for CD . For higher Reω and
CL (figure 4d, e), the trajectories tend to go from spiralling towards cycloidal motion.

Finally, the bubble will reach an equilibrium position (re, ϕe) where all forces acting
on it balance, as shown in figure 1. The axial position is kept fixed, as for small
enough bubbles, there is no axial asymmetry capable of inducing forces acting in the
axial direction. Note that for large bubbles in the Rb ∼ 1 cm regime, this can change
(Bluemink et al. 2005). From the equation of motion (2.1), we therefore have two
balance equations – one in the radial and one in the azimuthal direction – which for
the equilibrium situation ṙ = r̈ = ϕ̇ = ϕ̈ =0 can be solved for re and ϕe,

tan ϕe =
8

3

Rb

CDre

(2CL − 1 − CA), (2.14)

re =
−g sinϕe

ω2(2CL − 1 − CA)
. (2.15)

Here, the flow field from (2.2) has been used. The final position of the bubble (re, ϕe)
depends on ω, Rb, ρl , g, and on the kinematic viscosity of the fluid ν (since it influences
the values of CD and CL). Vice versa, the equilibrium position (re, ϕe) of the bubble
directly reveals the lift coefficient CL and the drag coefficient CD ,

CL = 1
2

[
1 + CA − g sinϕe

reω2

]
, (2.16)

CD = −8

3

Rb

r2
e ω

2
g cosϕe. (2.17)

Rb, ω and ν are the variables that can be adjusted in the experiment. The response of
the system is reflected in the equilibrium position (re, ϕe) (figure 1), characterized by
v = 0. The equilibrium radius can be expressed in the dimensionless numbers of (2.3)
and (2.5), namely,

Re =
2Rbωre

ν
, Sr =

2Rb

re

, Fr =
ω2re

2

2Rbg
, We =

2Rbρlω
2r2

e

σ
. (2.18)

In both simulations and experiments, we find that the bubble equilibrium position is
stable. Experimentally we test the stability by disturbing the bubble at equilibrium
with another bubble of similar size. Once that second bubble approaches the bubble
at equilibrium, the first bubble is kicked out of the equilibrium position, but then
re-approaches it again. To further support the stability of the equilibrium position,
a linear stability analysis was done for (re, ϕe) in (2.1), indeed confirming stability as
long as ρl > ρb.

3. Experiment
3.1. Set-up, uncertainties and data analysis

The experimental apparatus is sketched in figure 5. A glass cylinder of 500 mm length
and 100 mm inner diameter, is filled with de-ionized water or a water–glycerin mixture
and is rotated with an angular velocity ω in the range of 2–35 rad s−1 ± 0.5 % (at
high rotation rates mechanical vibrations introduce additional errors). A bubble is
injected approximately midway along the cylinder. The bubble size is controlled such
that Rb is typically around 1 mm (uncertainty ± 2 %), corresponding to We � 1 in
the glycerin/water mixtures and We � 1 in water, so that the bubble is essentially
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Figure 5. Sketch of the experimental set-up. (a) Side view: glass cylinder of length L = 500 mm.
The cylinder axis is aligned with the z-axis of the coordinate system. (b) Axial view: the cylinder
has diameter D = 100 mm. The end caps rest on ball bearings. A d.c. motor drives the cylinder
on the right-hand end cap via a toothed belt at constant rotation rate ω.

spherical. The transient motion of the bubble and its equilibrium position are recorded
with a digital camera.

By image processing, the equilibrium position of the bubble (re, ϕe) is obtained,
and from this, Re and Sr are determined. The experiments were conducted with Re
in the range 10−2–103 and Sr varying between 0.1 and 2. As the rotation rate is
decreased, the equilibrium radius re increases. Therefore, there is a lower limitation
on ω in order to avoid wall effects. In general, for low-Re and high rotation rates,
equilibrium positions are close to the rotation axis and therefore accompanied by low
accuracy of the re and ϕe measurements. Considerable effort was made to reduce the
experimental errors and uncertainties to a minimum for these low-Re experiments.
In order to have a reliable measurement of the equilibrium position, the camera
was placed on a two-way rotatable, x − y − z translation stage to align the optical
axis as precisely as possible with the axis of rotation of the cylinder. Additionally,
the location of the rotation axis in the digital images was determined by linear
extrapolation of the centre-positions on the front and back end of the cylinder. Image
analysis demonstrated a final uncertainty in the x, y position of the bubble centre of
no more than 0.75 pixels. Finally, the uncertainty in re was between 3 and 7 %, and
the uncertainty in ϕe was between 0.1◦ and 4◦, depending on the final bubble position.

For the water–glycerin mixtures, the viscosity ν and density ρl were measured using
standard equipment, and the resulting accuracies are ± 5 % and ± 0.1 %, respectively.
The accuracy of the surface tension σ was estimated to be 0.5 %. The systematic
uncertainties of compounded quantities (such as Re, Sr, etc.) were determined from
the systematic component uncertainties by the standard error propagation method.
For the case of Sr this, for example, leads to �Sr/Sr= �Rb/Rb + �re/re, implying
that the uncertainties in Sr range from 5 to 9 %.

Image sequences are typically recorded at 500 frames per second. The effect
of inhomogeneous background illumination is removed by subtracting an empty
background image, after which a global grey-level threshold is applied for image
segmentation. For each frame in the image sequence, the position of the cylinder
centre, that of the centroid of the bubble and the length of its major and minor axes
are computed.

3.2. Sphericity of bubbles and flow-field uniformity

For 60 out of 78 recorded bubbles, the aspect ratio (major/minor axis =χ) was below
1.1. Data points for which the shape was less spherical (i.e. points corresponding to
bubbles with an aspect ratio larger than 1.1) are indicated as such in the figures. The
largest observed aspect ratio was 1.66 (for a bubble with Rb = 1 mm, Re = 622 and
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Figure 6. Flow field around a large bubble (Rb ≈ 1.5 mm) at equilibrium, as measured by
particle image velocimetry (PIV). Note how the influence of the bubble is negligible just a few
bubble diameters downstream. In this case, Sr= 0.21, Re= 585. PIV images for further cases
with different Sr and Re and more details on the method can be found in Bluemink et al.
(2005).

ω = 34.9). Note that the aspect ratio of the bubbles (oblate spheroids) is taken into
account when calculating CA (Lamb 1934) and hence (through (2.16) and (2.17)) CL

etc. For χ = 1.1, we obtain CA = 0.56, an increase of about 10 % as compared to the
spherical case.

The approximate sphericity of the bubbles is confirmed by formally calculating
the Weber number according to (2.18). Indeed, all of the bubbles considered in the
present analysis have We � 2.66; the average Weber number is only 0.54. The bubble
with the largest Weber number, We= 2.66, also has the largest measured aspect ratio,
namely 1.66. Results for larger bubbles are given in Bluemink et al. (2005); for these
large bubbles, the phenomenology is rather different as they deform to such a degree
that off-diagonal elements of the added mass tensor become relevant, leading to a
motion of the bubble along the axis of the cylinder.

The quality of the flow field and the influence of the wake behind the bubbles on
their equilibrium position were studied using particle imaging velocimetry (PIV). As
can be seen in figure 6, even for a relatively large bubble, the wake quickly decays
and does not seem to affect the incident flow on the bubble. Therefore, we consider it
reasonable to assume that the flow field is in a state of uniform solid-body rotation.
Also, order of magnitude estimates indicate that the wake should be negligible for
Sr < 1. In our current data, Sr is smaller than 3 for all bubbles and only for 8 bubbles
is it between 1 and 3.

4. Experimental results for bubbles in vortical flow
4.1. Trajectories

Figure 7 shows typical experimental trajectories for Reynolds numbers in the range
from 102 to 622. Figures 7(a) and 7(b) show spirals; the lower the angular velocity,
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Figure 7. Typical experimental trajectories of the bubble: (a) Re= 102, ω = 15 rad s−1,
Rb = 0.4 mm, Reω = 10; (b) Re= 186, ω = 23.3 rad s−1, Rb = 0.7 mm, Reω = 45; (c) Re= 400,
ω = 35 rad s−1, Rb = 0.7 mm, Reω = 69; (d) Re= 622, ω = 35 rad s−1, Rb = 1.0 mm, Reω = 140.
Both axes are in mm, and the centre of the cylinder corresponds to x =0, y = 0.

the more slowly the bubble moves inwards, leading to a more closely wound spiral.
In other words, increasing the shear rate on the bubble reduces the entrapment time.
Also, as Sr increases, the equilibrium position shifts towards the cylinder centre. As
both Re and Sr increase, the trajectories become more complex and resemble cycloids
(figure 7c, d). Once the bubble has reached the vicinity of the equilibrium position,
it seems to be captured on an erratic trajectory. We interpret this motion as jitter
due to lack of stability in ω and in the horizontal alignment of the system. Note that
both spiralling and cycloidal motions are found in experiments (figure 7) as well as in
simulations (figure 4). For both, we find that cycloidal motion is predominant for large
Re and/or Sr. Attempts were made to integrate (2.1) numerically using experimental
data as input, thus providing a direct comparison between numerics and experiment.
The agreement between the numerical integration and experiment was reasonable at
best, indicating that the models for CL(Re, Sr) input into the numerical integration are
not accurate enough. Additional problems in these comparisons arise because ‘real’
bubbles have a finite eccentricity which introduces added mass components parallel
to the direction of bubble motion, not accounted for in the numerical simulations.
In § 5, we re-address the difficulty of numerically reconstructing the whole bubble
trajectory.
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Figure 8. Drag coefficient versus Reynolds number. The drag coefficients CD are indicated
by squares. The corresponding circles indicate the coefficients CD,Sr with shear correction
according to (2.8). The solid line represents the drag coefficient for solid spheres, (2.7). The
dashed line is for clean spherical bubbles according to (2.6).

4.2. Equilibrium positions

4.2.1. Drag coefficient

Figure 8 shows the measured dependence of the drag coefficient CD on the Reynolds
number, as calculated from the equilibrium position (cf. (2.17)). Additionally, the drag
curves for a clean spherical bubble (2.6) and a solid sphere (2.7) in a uniform flow
are shown. We would expect the drag coefficients to fall between the two lines,
indicating a certain amount of contamination of the system. However, the measured
drag coefficients (open symbols in figure 8) are systematically above the solid drag
curve. As indicated by the error bars, measurement errors cannot explain this effect.
Taking a closer look at Sr for the different data points reveals that the deviation from
the solid drag curve is larger when Sr is larger. Assuming that the drag coefficient
depends on the shear rate as given in (2.8), the measured CD,Sr coefficients can be
shear-compensated, i.e. we can estimate the drag coefficient CD0 that the bubble would
have if it were embedded in a uniform flow. The result of such a compensation is
shown in figure 8 (closed symbols); compensated drag coefficients tend to fall in
between the drag curves for a clean spherical bubble and a solid sphere, indicating
that the shear on a particle embedded in solid-body rotation modifies the drag in a
qualitatively similar fashion as in a linear shear flow.

4.2.2. Lift coefficient

Figure 9 shows the dependence of the lift coefficient on Sr, over three decades of
Sr. In this plot we compare our results with available data from Sridhar & Katz
(1995) and Naciri (1992). There is some discrepancy between our measurements and
Sridhar & Katz’s extrapolated fit, but this discrepancy decreases with increasing Re.

Figure 10 shows the available data versus Fr1/2. It summarizes the measurements of
Naciri and our data in glycerin–water mixtures and water. The empirical fit suggested
by Naciri does not hold for our data, and hence the Froude number does not seem
to be an adequate parameter to describe our results.

Figure 11 shows the dependence of the lift coefficient on Re. While Sridhar & Katz
(1995) noted that their data for CL did not seem to depend on Re, our measurements
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Figure 9. Lift coefficient CL versus Strouhal number Sr: our data sets with a bubble aspect
ratio χ > 1.1 (�) and with χ < 1.1 (�), Sridhar & Katz’s data (�: 20 < Re< 30, �: 50 <Re< 70,
�: 65 <Re< 80), and Naciri’s data (�, taken from Sridhar & Katz 1995). Superposed is the
empirical model suggested by Sridhar & Katz (equation (2.10), solid line). The inset shows the
spread of our data more clearly, including some typical error bars.
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Figure 10. −Fr CLΩ versus Fr1/2: glycerine–water results (� for a bubble aspect ratio χ < 1.1
and � for χ > 1.1), results for water (� and � for χ < 1.1 and χ > 1.1, respectively) and Naciri’s
results (�) taken from figure II.6 in Naciri (1992). Superposed is the empirical fit suggested by
Naciri (2.9), which cannot describe the present data.

indicate a strong dependence on Re at low Re. Moreover, the shear-induced lift
coefficient CL is found to be negative for Re < 5 (an Re range in which Sridhar &
Katz did not measure CL), as the rotational lift coefficient CLΩ < −3/4 in this range
(cf. (2.12)). Figure 11 contains data from our experiments (triangles and squares)
and numerical data (circles) obtained by Magnaudet & Legendre (1998). For Re > 5,
both the experiments and the simulations are in good agreement with the high-Re
theoretical prediction. In particular, for large Re, they both converge to the asymptotic
value of CLΩ = −1/4 corresponding to CL = 1/2. For Re < 5, the numerical results
show a strongly decreasing trend for CL which becomes negative for small enough
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Figure 11. Rotational lift coefficient CLΩ versus Reynolds number Re. The measured
rotational lift coefficients CLΩ and typical error bars are indicated by � and � for χ < 1.1 and
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assumption that CA = 1/2.

Re. The experimental data show a similar but even more pronounced trend, the
shear-induced lift coefficients becoming negative when Re < 5. Hence, it appears that
the transition between the high-Re and low-Re mechanisms for the generation of
the shear-induced lift force discussed in § 2.3 occurs around Re = 5. Magnaudet &
Legendre (1998) observed the same trend in a linear shear flow. More precisely,
they found the low-Re scaling involved in Saffman’s (1965) and McLaughlin’s (1991)
predictions to apply for Re < 2, approximately, and the two regimes to match around
Re= 5.

According to the low-Re theory, CLΩ should be proportional to (ReSr)−1/2 in the
corresponding regime, provided (Sr/Re)1/2 is much larger than unity (Herron et al.
1975; Gotoh 1990). However, our experimental values for the quantity CLΩ (ReSr)1/2

in the range Re < 5 are not constant and still decrease significantly as Re goes to
zero. This may be because the ratio Sr/Re is not large enough in several cases or
may be due to the influence of the bubble wake, keeping in mind that re tends to
zero with Re so that the incident flow ‘seen’ by the bubble is not strictly in solid-body
rotation. Finally, the experimental accuracy on re and ϕe may also be questioned in
this regime. We plan to perform new experiments in this regime to clarify this point.

5. Conclusion
In conclusion, the motion of a single bubble in a solid-body rotational flow was

studied experimentally. Drag and lift coefficients have been obtained from the mea-
sured equilibrium position of the bubble. The dependence of the drag and lift coeffi-
cients on shear rate and Reynolds number has been studied over a wide range of
Sr and Re. The two main findings of this paper are: (i) there is a significant shear
dependence of the drag coefficient for strong shear and (ii) there is a remarkable
change of sign in the lift force in solid-body rotation around Re= 5. The
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aforementioned strong shear dependence of CD is in agreement with previous
numerical predictions by Legendre & Magnaudet (1998). Even though their prediction
was made for linear shear flow, it seems to be valid for the case of solid-body rotation
also. We find a significant dependence of the lift coefficient on Sr and Re, especially
for strong shear and small Re. For Re> 5, we find that the total (rotational) lift
coefficient CLΩ is negative, but its values are larger than −3/4, yielding positive values
of the shear-induced lift coefficient CL. This is in agreement with predictions from
inviscid theory (Auton 1987). In contrast, for Re < 5, our experiments show negative
shear-induced lift coefficients. That the lift force on a fixed sphere (solid particle
or bubble) embedded in a solid-body rotation flow is negative (i.e. centripetal) at
low Reynolds number is in line with Gotoh’s (1990) theoretical prediction which is
the counterpart of Saffman’s prediction for the flow configuration considered here.
Further improvements of the experimental set-up will allow us to achieve more precise
measurements in this low-Re range; but note again that (2.1) is not necessarily a good
approximation for that low-Re regime: First, the history force has been omitted and
secondly, the lift force parameterization is inappropriate for small Re.

What would be desirable is to reconstruct the whole bubble trajectory with the help
of (2.1) and the values obtained for the lift and drag coefficients from our analysis
of the equilibrium position. At present, there is no way to achieve this. The accuracy
in CL and CD is simply not sufficient and additional terms in (2.1) may also play
a role. In addition, in a non-stationary situation, the bubble’s wake and hence the
forces may differ from their steady counterparts. In the numerical simulations these
small imperfections accumulate during the spiralling process towards the equilibrium
which can take minutes. Therefore, only a local comparison of the bubble trajectories
or a comparison between bubble trajectory characters gives satisfactory agreement
between experiment and numerics.
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Maxworthy, T., Gnann, C., Kürten, M. & Durst, F. 1996 Experiments on the rise of air bubbles
in clean viscous liquids. J. Fluid Mech. 321, 421.

Mazzitelli, I., Lohse, D. & Toschi, F. 2003a The effect of microbubbles on developed turbulence.
Phys. Fluids 15, L5–L8.

Mazzitelli, I., Lohse, D. & Toschi, F. 2003b On the relevance of the lift force in bubbly turbulence.
J. Fluid Mech. 488, 283–313.

Mei, R., Klausner, J. & Lawrence, C. 1994 A note on the history force on a spherical bubble at
finite Reynolds number. Phys. Fluids 6, 418–420.
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